Massa (fisica)
La massa è una proprietà fisica che, in termini semplici, misura la quantità di materia contenuta in un corpo. La massa è un concetto centrale della meccanica classica e delle materie ad essa correlate. L'unità di misure della massa nel Sistema Internazionale è il chilogrammo.In senso stretto, il termine massa si riferisce a due quantitÃ
- La massa inerziale è la misura dell'inerzia di un corpo, che è la resistenza al cambiamento dello stato di movimento quando viene applicata una forza. Un corpo con massa inerziale piccola cambia il suo movimento più prontamente, e un corpo con massa inerziale alta reagisce più lentamente.
- La massa gravitazionale è la misura della forza di interazione di un corpo con la forza gravitazionale. All'interno dello stesso campo gravitazionale, un corpo con massa gravitazionale piccola sperimenta una forza minore di quella di un corpo con massa gravitazionale grande. (Questa quantità viene a volte confusa con il peso)
Table of contents |
2 Massa gravitazionale 3 Equivalenza tra massa inerziale e gravitazionale 4 Conseguenze della relatività 5 Vedi anche |
La massa inerziale viene determinata dalla seconda e dalla terza delle leggi del moto. Dato un corpo con massa inerziale conosciuta, possiamo ottenere la massa inerziale di un secondo corpo, facendo si che i due esercitino una forza l'uno sull'altro. In base alla terza legge di Newton, le forze sperimentate dai due corpi avranno pari intensità . Questo ci permette di studiare come i due corpi resistono all'applicazione di forze simili.
Supponiamo di avere due corpi, A e B, con massa inerziale mA (che è conosciuta) e mB (che vogliamo determinare). Assumiamo queste masse come costanti. Isoliamo i due corpo da tutte le altre influenze fisiche, in modo che le uniche forze presenti siano quelle esercitate da A su B, che indicheremo con FAB, e quelle esercitate da B su A, che indicheremo con FBA. In base alla seconda legge di Newton,
Massa Inerziale
dove aA e aB sono le accelerazioni di A e B rispettivamente. Per procedere, dobbiamo assicurarci che tali accelerazioni siano diverse da zero. Questo si può ottenere, ad esempio, facendo in modo che i due corpi collidano ed eseguendo le nostre misurazioni durante la collisione.
La terza legge di Newton ci dice che le due forze sono uguali e opposte, ovvero:
- .
- .
Nella discussione di cui sopra, abbiamo assunto che le masse di A e B siano costanti. Questa è un'assunzione fondamentale, conosciuta come conservazione della massa, ed è basata sull'aspettativa che la materia non possa mai essere creata o distrutta, ma solo suddivisa e ricombinata (Le implicazioni della relatività speciale sono discusse più avanti). E' a volte utile trattare la massa di un corpo come variante nel tempo: ad esempio, la massa di un razzo, decresce con il consumo del combustibile. Comunque, questa è un'approssimazione basata sulla non considerazione delle parti di materia che entrano o escono dal sistema. Nel caso di un razzo queste parti corrispondono al propellente espulso; Se dovessimo misurare la massa del razzo e del suo propellente, troveremmo che si è conservata.
Si considerino due corpi A e B con massa gravitazionale \MA e MB, alla distanza di |rAB| uno dall'altro. La legge di gravitazione di Newton afferma che la forza di gravità che ogni corpo esercita sugli altri è:
dove G è la costante di gravitazione universale. La legge sopra menzionata può essere riformulata nel seguente modo: data l'accelerazione g di una massa di riferimento in un campo gravitazionale (come il campo gravitazionale della Terra), la forza gravitazionale su un corpo di massa gravitazionale M è pari a:
.
Questa è il modo in cui si determinano le masse a partire dal peso. Nei semplici pesapersone casalinghi, per esempio, la forza |F| è proporzionale allo spostamento di una molla collegata al piatto (vedi legge di Hooke) e la scala è calibrata per tenere conto di g, in modo da poter leggere direttamente la massa M.
Gli esperimenti hanno dimostrato che la massa inerziale e gravitazionale sono uguali, anche spingendo le misurazioni ad una notevole precisione. Questi esperimenti sono essenzialmente misurazioni di fenomeni ben conosciuti, il primo fu osservato da Galileo: i corpi cadono ad una velocità indipendente dalla loro massa (in assenza di fattori come l'attrito). Supponiamo di avere un oggetto di massa inerziale e gravitazionale rispettivamente m ed M. Se la gravità è la sola forza agente sugli oggetti, la combinazione della seconda legge di Newton e della legge di gravitazione universale ci permette di calcolare l'accelerazione a come:
Quindi, tutti i corpi nello stesso campo gravitazionale cadono alla stessa velocità se e solo se il rapporto fra la massa gravitazionale ed inerziale è sempre uguale ad una costante fissa. Possiamo quindi fissare questo rapporto pari ad 1 per definizione.
Nella meccanica relativistica, la massa di una particella libera è legata alla sua energia e al momento dalla seguente equazione:
L'equazione governa la meccanica di particelle senza massa quali i fotoni.
Massa gravitazionale
Equivalenza tra massa inerziale e gravitazionale
Conseguenze della relativitÃ
Nella relatività speciale, il termine "massa" si riferisce alla massa inerziale di un corpo così come viene misurata nel sistema di riferimento in cui è a riposo (che è detto sistema a riposo). Il metodo di cui sopra, per determinare la massa inerziale rimane valido, a patto che si faccia in modo che la velocità del corpo sia molto più piccola di quella della luce, così facendo sono valide le leggi della meccanica classica.
Questa equazione può essere riarrangiata nel seguente modo:
Il limite classico corrisponde alla situazione in cui il momento p è molto inferiore a mc, in questo caso possiamo espandere con una serie di Taylor la radice quadrata, ottenendo
Il primo termine, che è il più grande, è l'energia a riposo della particella. Posto che la massa non sia zero, una particella ha sempre un quantitativo minimo di energia indipendentemente dal suo momento. L'energia a riposo è normalmente inaccessibile, ma può essere sprigionata dalla divisione o dalla combinazione delle particelle, così come accade durante la fusione nucleare e la fissione nucleare. Il secondo termine è semplicemente la classica energia cinetica, come si può mostrare usando la definizione classica del momento.
e sostituendo nell'equazione di cui sopra:
La relazione relativistica tra massa, energia e momento resta valida anche quando le particelle sono senza massa, che nella meccanica classica è un concetto non valido. Quando m = 0, la relazione si semplifica in
dove p è il momento relativistico.
Fisica |
Progetto Fisica | Portale Fisica |